Separably injective C*-algebras

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separably Injective Banach Spaces

It is no exaggeration to say that the theory of separably injective spaces is quite different from that of injective spaces. In this chapter we will explain why. Indeed, we will enter now in the main topic of the monograph, namely, separably injective spaces and their “universal” version. After giving the main definitions and taking a look at the first natural examples one encounters, we presen...

متن کامل

Separably Injective Banach Spaces

It is no exaggeration to say that the theory of separably injective spaces is quite different from that of injective spaces. In this chapter we will explain why. Indeed, we will enter now in the main topic of the monograph, namely, separably injective spaces and their “universal” version. After giving the main definitions and taking a look at the first natural examples one encounters, we presen...

متن کامل

Injective Hulls of C* Algebras. Ii

Proof. The idempotents correspond to the Borel sets modulo sets of first category. Since, in addition, the idempotents generate B(X), B(X) is an AW* and hence an injective algebra. The natural map U of C(X) into B(X) induced by the inclusion map is clearly a homomorphism. It is one-one since continuous functions which are not identically equal must differ on a set of second category. To complet...

متن کامل

Injective Envelopes of Separable C * -algebras

Characterisations of those separable C∗-algebras that have type I injective envelopes or W∗-algebra injective envelopes are presented. An operator system I is injective if for every inclusion E ⊂ F of operator systems each completely positive linear map ω : E → I has a completely positive extension to F . An injective envelope of an operator system E is an injective operator system I such that ...

متن کامل

Injective Envelopes and Local Multiplier Algebras of C*-algebras

The local multiplier C*-algebra Mloc(A) of any C*-algebra A can be ∗-isomorphicly embedded into the injective envelope I(A) of A in such a way that the canonical embeddings of A into both these C*-algebras are identified. If A is commutative then Mloc(A) ≡ I(A). The injective envelopes of A and Mloc(A) always coincide, and every higher order local multiplier C*-algebra of A is contained in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archiv der Mathematik

سال: 2016

ISSN: 0003-889X,1420-8938

DOI: 10.1007/s00013-016-0905-3